Metas Curriculares do Ensino Básico Matemática – 1.º Ciclo

António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Operações com Números Racionais

1.º ciclo

Adição e subtração de frações de mesmo denominador

NO₃

- 12. Adicionar e subtrair números racionais
 - Reconhecer que a soma e a diferença de frações de iguais denominadores podem ser obtidas adicionando e subtraindo os numeradores.

$$\frac{3}{5} + \frac{6}{5} = \frac{3+6}{5} = \frac{9}{5}$$

Produto de um número natural por um número racional

- 5. Multiplicar e dividir números racionais não negativos
 - 1. Estender dos naturais a todos os racionais não negativos a identificação do produto de um número q por um número natural n como a soma de n parcelas iguais a q, se n>1, como o próprio q, se n=1, e representá-lo por $n\times q$ e $q\times n$.
 - 2. Reconhecer que $n \times \frac{a}{b} = \frac{n \times a}{b}$ e que, em particular, $b \times \frac{a}{b} = a$ (sendo n, a e b números naturais).

$$3 \times \frac{2}{7} = \frac{2}{7} + \frac{2}{7} + \frac{2}{7} = \frac{3 \times 2}{7}$$

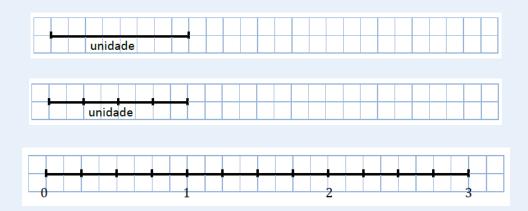
Relação entre fração e quociente

NO3

- 11. Medir com frações
 - 11. Reconhecer que uma fração cujo numerador é divisível pelo denominador representa o número natural quociente daqueles dois.

Exemplo

Verifica que o ponto da reta numérica correspondente a $\frac{12}{4}$ representa o número natural igual ao quociente de 12 por 4.



Relação entre fração e quociente

NO4

Programa

 Compreender frações com os significados quociente, partetodo e operador.

- 5. Multiplicar e dividir números racionais não negativos
 - 4. Reconhecer que $a:b=\frac{a}{b}=a\times\frac{1}{b}$ (sendo a e b números naturais).

Exemplo

- a. Calcula $3 \times \frac{4}{2}$.
- b.* Tendo em conta a alínea anterior, escreve 4:3 na forma de fração.

$$3 \times \frac{4}{3} = \frac{3 \times 4}{3} = 4$$
 (sistematização dos descritores NO3-11.11 e NO4-5.2)

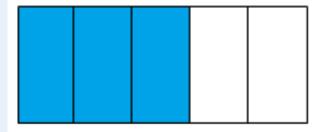
Esta igualdade significa que $\frac{4}{3}$ é o número que multiplicado por 3 é igual a 4: $\frac{4}{3} = 4:3$

$$\frac{4}{3} = 4:3$$

- 4. Simplificar frações
 - 1. Reconhecer que multiplicando o numerador e o denominador de uma dada fração pelo mesmo número natural se obtém uma fração equivalente.

$$\frac{3}{5}$$

$$\frac{12}{20} = \frac{3 \times 4}{5 \times 4}$$



$$\frac{3}{5} = \frac{3 \times 4}{5 \times 4}$$

Divisão de um número racional por um número natural

$$\frac{4}{3}: 5 = ?$$

$$\frac{4}{3}: 5 = \frac{4}{3 \times 5}$$

- 5. Multiplicar e dividir números racionais não negativos
 - 5. Reconhecer que $\frac{a}{b}$: $n = \frac{a}{n \times b}$ (sendo $n, a \in b$ números naturais).

a. Calcula
$$2 \times \frac{1}{2 \times 3}$$
.

b.* Completa a igualdade
$$\frac{1}{3}$$
: 2 = ?

a.
$$2 \times \frac{1}{2 \times 3} = \frac{2}{2 \times 3} = \frac{1}{3}$$

b.
$$\frac{1}{3}$$
: 2 é o número que se deve multiplicar por 2 para obter $\frac{1}{3}$. Portanto, $\frac{1}{3}$: $2 = \frac{1}{2 \times 3}$.

Divisão de um número racional por um número natural

- 5. Multiplicar e dividir números racionais não negativos
 - 5. Reconhecer que $\frac{a}{b}$: $n = \frac{a}{n \times b}$ (sendo $n, a \in b$ números naturais).

- a. Divide um segmento de comprimento $\frac{1}{3}$ em dois segmentos iguais. Quantos dos segmentos obtidos precisas para preencher o segmento unidade? Qual a medida do comprimento de cada um?
- São necessários 6 segmentos, pelo que o comprimento de cada um é igual a $\frac{1}{6}$.

b. Completa a igualdade:
$$\frac{1}{3}$$
: $2 = \frac{1}{[] \times []} = \frac{1}{[]}$

Produto de um número racional por uma fração unitária

NO4

- 5. Multiplicar e dividir números racionais não negativos
 - 6. Estender dos naturais a todos os racionais não negativos a identificação do produto de um número q por $\frac{1}{n}$ (sendo n um número natural) como o quociente de q por n, representá-lo por $q \times \frac{1}{n}$ e $\frac{1}{n} \times q$ e reconhecer que o quociente de um número racional não negativo por $\frac{1}{n}$ é igual ao produto desse número por n.

Já vimos que $a: b = \frac{a}{b} = a \times \frac{1}{b}$. Estendemos esta relação ao caso em que a é um número racional. Por exemplo,

$$\frac{3}{4} \times \frac{1}{5} = \frac{3}{4} : 5 \left(= \frac{3}{4 \times 5} \right)$$

Frações e dízimas

Ideia central

- As frações e as dízimas (finitas) são ambas, **ao mesmo título**, representações de números racionais. As frações são até mais interessantes, umas vez que representam todos os números racionais.
- Os alunos devem pois operar com frações, sem se preocuparem sistematicamente com a respetiva representação em dízima.
- O programa privilegia a representação em dízima, o que não é correto, nem de um ponto de vista científico, nem de um ponto de vista pedagógico, tendo como termo de comparação as melhores práticas internacionais. (ver currículos de Singapura e dos Estados Unidos da América, por exemplo)

Programa Nacional:

• Representar também na recta numérica números como $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{10}$ e $\frac{5}{10}$. relacionando a representação fraccionária com a decimal.

Algoritmo da divisão enquanto gerador de aproximações por dízimas

- 6. Representar números racionais por dízimas
 - 5. Calcular aproximações, na forma de dízima, de números racionais representados por frações, recorrendo ao algoritmo da divisão inteira e posicionando corretamente a vírgula decimal no resultado, e utilizar adequadamente as expressões «aproximação à décima», «aproximação à centésima» e «aproximação à milésima».

Algoritmo da divisão enquanto gerador de aproximações por dízimas

NO4

- 6. Representar números racionais por dízimas
 - 5. Calcular aproximações, na forma de dízima, de números racionais representados por frações, recorrendo ao algoritmo da divisão inteira e posicionando corretamente a vírgula decimal no resultado, e utilizar adequadamente as expressões «aproximação à décima», «aproximação à centésima» e «aproximação à milésima».

Aproxima às centésimas o quociente 25:7

Algoritmo da divisão enquanto gerador de aproximações por dízimas

Informação Complementar para o professor

Justificação deste procedimento

Registe-se que este procedimento, suportado pelo algoritmo da divisão, garante que a aproximação obtida tem um erro inferior a uma centésima. Observe-se a igualdade:

$$\frac{25}{7} = \frac{2500}{7} \times \frac{1}{100} = \frac{7 \times 357 + 1}{7} \times \frac{1}{100} = \left(357 + \frac{1}{7}\right) \times \frac{1}{100} = 3,57 + \frac{1}{7} \times \frac{1}{100}.$$

Significa que a diferença entre $\frac{25}{7}$ e 3,57 é $\frac{1}{7} \times \frac{1}{100}$ (número positivo inferior a $\frac{1}{100}$). Isto quer dizer que o valor obtido é sempre uma aproximação por defeito e que o algarismo das centésimas fica encontrado.

De maneira mais geral, para obter uma aproximação às centésimas de uma fração $\frac{D}{d}$, representando por q e r respetivamente o quociente e o resto da divisão inteira de $100 \times D$ por d, vem

$$\frac{D}{d} = \frac{d \times q + r}{d} \times \frac{1}{100} = \left(q + \frac{r}{d}\right) \times \frac{1}{100} = \left(q \times \frac{1}{100}\right) + \left(\frac{r}{d} \times \frac{1}{100}\right)$$

Como a fração $\frac{r}{d}$ é sempre uma fração própria (o resto é inferior ao divisor), a diferença entre o quociente exato $\frac{D}{d}$ e a aproximação obtida $q \times \frac{1}{100}$ é dada por $\frac{r}{d} \times \frac{1}{100}$, que é um número positivo inferior a $\frac{1}{100}$.

Multiplicação e divisão de números representados por dízimas

NO4

- 6. Representar números racionais por dízimas
 - 6. Multiplicar números representados por dízimas finitas utilizando o algoritmo.
 - 7. Dividir números representados por dízimas finitas utilizando o algoritmo da divisão e posicionando corretamente a vírgula decimal no quociente e no resto.

Antes de operacionalizar o cálculo, há que explicar o que se entende, em geral, pelo "produto de duas dízimas". O programa pede que se calculem produtos e quocientes de números representados por dízimas, mas escamoteia totalmente esta questão....

$$2,3 \times 3,1 = ?$$
 $\frac{23}{10} \times \frac{31}{10}$

O produto de frações é um conteúdo do 2.º ciclo... Há que fazer uma ligeira antecipação...

Multiplicação e divisão de números representados por dízimas

NO4

 Reconhecer que o resultado da multiplicação ou divisão de uma dízima por 10, 100, 1000, etc. pode ser obtido deslocando a vírgula uma, duas, três, etc. casas decimais respetivamente para a direita ou esquerda.

(Admitindo que se estende o produto a todos os racionais por forma a que se torne uma operação associativa e comutativa)

$$2,3 \times 3,1 = \frac{23}{10} \times \frac{31}{10} = 23 \times \frac{1}{10} \times 31 \times \frac{1}{10} = 23 \times 31 \times \frac{1}{100}$$
$$= 713 \times \frac{1}{100} = 7,13.$$

Multiplicação e divisão de números representados por dízimas

Os alunos deverão operacionalizar o algoritmo tradicional:

			3	7,	6	
	X		0,	3	8	
		3	0	0	8	
+	1	1	2	8		
	1	4,	2	8	8	